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The site percolation as a boundary problem 

L Billard and P Villemain 
Centre d'Etudes NuclCaires de Grenoble, Dtpartement de Recherche Fondamentale, 
Section de Physique du Solide, 85 X, 38041 Grenoble Cedex, France 

Received 30 March 1979 

Abstract. The site percolation on two-dimensional lattices is shown to be related to a 
boundary problem. This permits a new approach for the site percolation on a Cayley tree: it 
is shown that there is no percolation on a Cayley tree, if one takes care of the great number 
of boundary sites; this is consistent with the absence of spontaneous magnetisation on such 
lattices. However, the usually considered percolation on these lattices is shown to be 
consistent with the existence of a spontaneous local magnetisation for sites which are far 
from the boundary. Finally, the ferromagnetic percolation problem on usual lattices is also 
considered as a boundary problem. 

1. Introduction 

Until recently, the Bethe lattice was considered as the typical one for which exact results 
could be obtained, due to the fact that it contains no closed loops. For instance, the 
Bethe-Peierls approximation was shown to solve exactly the Ising problem (Domb 
1960), or the site percolation problem was solved (Fisher and Essam 1961) with a 
critical concentration x c  = ( z  - l)-', where z is the coordination number. 

However, there has been an increase of interest since Eggarter (1974) showed that 
the transition occuring on a Cayley tree is not of the type usually considered: a careful 
study was made by Matsuda (1974), showing that unusual properties are due to the 
non-vanishing proportion of boundary sites in the thermodynamic limit, and this has led 
to the discovery of transitions of continuous order (Muller-Hartmann and Zittartz 
1974). We want to show here that such features are also present for the site percolation 
problem on a Cayley tree. 

In 0 2, we reformulate the site percolation problem (taking the square lattice as an 
example) in a manner showing its close connection with a boundary problem. Some 
remarks are also made on the dilute Ising problem. 

In 0 3, we show that, if one takes care of the great number of boundary sites for a 
Cayley tree, there is no percolation ( x c =  1) for it. As a consequence, there is no 
spontaneous magnetisation for the dilute Ising model on it. 

In 0 4, we define an unusual type of percolation problem, which is shown to coincide 
with the percolation problem considered by previous authors, leading to x c  = ( z  - l)-*. 
In fact, the Cayley tree we consider in 00 3 and 4 has z = 3 for simplicity, and we extend 
the results for z > 3 in 0 5 .  

Returning to the usual lattices (square plane), the ferromagnetic percolation is 
considered in 0 6 along the same lines. This needs a careful study to have the correct 
definitions, but one can see that here also it may be viewed as a boundary problem. 

0305-4470/80/041335 + 20$01.50 @ 1980 The Institute of Physics 1335 
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2. The site percolation for a square lattice 

Let us consider a square lattice of N x N sites. We consider the 2 N x N  configurations x 
obtained by putting n atoms A on certain sites, and N 2  - n atoms B on the remaining 
sites and attribute to each configuration where n atoms A are present the probability 
x"(1 -x)~'-", where 0 s  x S 1 is given (Griffiths and Lebowitz 1968). Let us define a 
function f for each configuration: to each x, we associate the number f(x). 

We shall now calculate 

. X)N2-n 

X 

where the sum is over the 2N2  configurations x, and II is the number of atoms A in each 
of them. 

Let us suppose that 

(2) 

where the sum is over all the clusters of A atoms which are present in the configurations 
x; as usual, we call a cluster a set of sites which are connected by a path of 
nearest-neighbour bonds. Then one obtains: 

T=Ccp(Cl) 1 Xn(l-X)N2-n 
Cl X 2 C l  

(3) 

where the first sum is over all the clusters that are possibly found in any one of the 2 N 2  
configurations, and the second sum is over all the configurations containing a given 
cluster. 

Now, one has: 

where p is the number of sites in the cluster, and q is the number of boundary sites, i.e. 
the number of sites of the lattice which are not in the cluster but are connected to some 
site of the cluster by a nearest-neighbour bond (figure 1). 

Let us now suppose that cp ( Cll) = cp ( C12) if Cl and C12 are two clusters which can be 
superposed by a translation (Cll and C12 will be said to belong to the same type of 
cluster). 

Then: 

T=Ccp(C) 1 xp(l-x)q 
C Cl-c  

where the first sum is over all the types of clusters that are possibly found in any one of 
the 2N2 cordigurations, and the second sum is over all the clusters which are of the same 
type. Now, for each of them, p is the same but q is not the same: in fact, if the cluster is 
put on the lattice so that no site of it is on the boundary of the lattice, q is equal to the 
value it would have if the cluster was imbedded in the infinite lattice. If, however, the 
cluster is in a position such that some sites of it are on the boundary of the lattice, q is 
reduced from its standard value (figure 1). 

We are thus led to characterise a type of cluster by the following eight parameters: 
p :  number of sites in the cluster 
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. . . . . . . . . . . .  . . . . . . . . . . . .  
Figure 1. A configuration with two clusters of the same type; both have p = 12, but one has 
q = 18 and the other has q = 12. Sites occupied by A atoms are x, sites occupied by B atoms 
are 0 ,  boundary sites for clusters are 0. 

q : number of boundary sites if the cluster was imbedded in an infinite lattice 
k ,  I :  dimensions of the cluster 
n l ,  n2,  n3, n4: number of sites of the cluster that are the most to the left, the most to 

the top, the most to the right, the most to the bottom. 
These six last parameters are determined in the following way: around each site of 

the cluster, we draw the four edges of the unit square centred at the site, then we 
suppress the edges that occur twice (Kunz and Souillard 1978). Then we consider the 
smallest rectangle which entirely contains the contour just obtained. We call k and 1 the 
lengths of the sides of the rectangle, and n l ,  n2, n3, n4 the length of the portions of the 
contour that coincide with some portion of the left, upper, right, lower edge of the 
rectangle respectively (figure 2). 

Then it will be easily seen that: 

where the sum is over all types of clusters which can possibly occur, i.e. types with k and 
[ S N :  

pN(C)  = [ 1 - 6 ( k ,  N)][1- S(1, N ) ] ( N  - 1 - I)(N - 1 - k ) x P (  1 - x ) ~  (7) 
P~(~)=[i-s(k,~)1[1-~(~,~)~(~-i-~)xP[(i-x)~-"~+(i-x)~-"4~ 

+[ 1 - S(k ,  N)][l- S(1, N)](N - 1 - k ) x P [ (  1 - x)'-"' + (1 - ~)'-"3] 

+[1 - S ( k ,  N)][1-6(1, N ) ] x P [ ( l  - x ) " " ~ - " z  
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Figure 2. The parametersdefininga cluster. Here p = 37, q = 52, k = 9, I = 10, n, = 2, n2 = 
1, n3 = 4, n4 = 4. 

pR(C)  =[1-S(1 ,  N) ]S (k ,  N ) x P [ ( N - 1  - 1 ) ( 1  - X y - " 2 - " 4  

+(I - x ) q - " 2 - " 4 - " 3  1 
+ [ 1  --a&, N)]s(I ,  N ) x ~ [ ( N -  1 - k ) ( i  - ~ ) ~ - ~ 1 - ~ 3 + ( i - ~ ) ~ - ~ l - " 3 - " 2  

+ ( 1  - x ) q - " l - " 3 - " 4  ]+6(k, N)S( l ,  N)x"( l  -X)q-n'-"2-"3-"4. 

+ ( 1  - x)q -"2-"4-"1  

(9) 
Here, p N ( C )  corresponds to clusters in positions such that no site is on the boundary of 
the N x N lattice, contrary to p;J(C) ;  p & ( C )  corresponds to clusters that are so large 
that, necessarily, they have sites on the boundary of the lattice. 

As an example, we shall take the function f which associates to each configuration 
the number of A atoms in it; such a function can be defined as 

f ( x )  = c dCI) 
C/ 

with cp(C/)=p, i.e. the number of A atoms in the cluster. 
On the other hand, one can calculate directly 

f =  c nxn(l  - X ) N 2 - n  = N * X  
X 

so that we obtain the main identity: 

It must be emphasised that, up to now, we have worked on finite lattices and all 
equalities result from elementary considerations. 
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Now, we shall rewrite (12)  in the form 

Let N + CO. A simple guess would be the following: p h  and p k  being associated with 
boundary effects, they probably cancel in the limit, so that 

We shall now see that (14) is wrong because p h  and pL are precisely responsible for the 
occurrence of percolation. 

Let ( U Ci) be a given family of types of clusters, and let g( U Ci) be the mean number 

of A atoms which are in this family, i.e. the number of such atoms divided by the number 
of sites N 2 ,  when N -* CO. Then N is larger than the dimensions k and 1 of any of the Ci, 
so that 

S S 

1 1 

and, because s is fixed and the k ,  1, p ,  q, n1, n2, n 3 ,  n4 of each Ci are given, one obtains 

Letting s + CO, i.e. taking all the possible families of types of clusters, we obtain the 
function 

g ( x )  = p x P ( 1  - x y  (17)  
( C )  

which will be recognised as the usual percolation series. 
This is indeed an infinite series and we shall now see that this series is convergent, i.e. 

that expression (17) makes sense for every x .  
In fact, let us consider the mean number of A atoms which are not connected by a 

path of sites A to some site (included) of the boundary of the N x N lattice; let q ( x )  be 
this number, in the limit N + CO. One then has: 

1 I S N - 1 1  

Let M be fixed: one can now write 

X ~ ( P ( X ) B  N + m  lim IC: k < M \  ( N - l - M ) 2 + x P ( l - q ) q  
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The sequence SM is clearly increasing in M, bounded by x, and so it has a limit when 
M+CO. 

This limit is clearly g(x) because, due to the positiveness of terms in (17) ,  we can 
rearrange them in any order we want. 

Thus 
x 3 p(x)  3 g(x). (20)  

On the other hand: 

p ( x ) s  lim (N-2)’&xP(l-x)‘  
N - C O ~ C  : k < N I  N 

N - 2  
= lim (7) sN = g(x) 

N+m 

so that, using (20) and (21) ,  we obtain: 

g(x) = q(x)  s x. (22)  

Thus, in this case, the sum of the percolation series, which represents the mean number 
of atoms A which are in any family of (finite) clusters, is equal to the mean number of 
atoms A which are in clusters not connected to the boundary of the N x N lattice, when 
N+CO. 

The so-called infinite cluster may be viewed as the set of atoms A which are in 
clusters connected to the boundary of the N x N lattice. This has been used recently to 
obtain rigorous results for the percolation problem (Kunz and Souillard 1978). 

Thus we have: 

Based on numerical calculations (Essam 1972, Sykes et a1 1976): 

x -g(x)= 0 for x Gxc-  0.59. (24)  

It is shown in appendix 1 how these considerations lead very easily to g(x) = x for low x. 
Let us now briefly discuss the quenched dilute Ising model (Griffiths and Lebowitz 

1968). We imagine that atoms A carry a localised spin S = 2, and that spins interact via 
the usual nearest-neighbour ferromagnetic Ising interaction; moreover, they are put in 
a magnetic field h. For each configuration, we can calculate the mean magnetisation per 
site (using the Boltzmann distribution). Then, we take the average over the 2N2 
configurations, let N + CO, and finally let h + + 0. It must be emphasised that the order 
of the preceding operations is of fundamental importance. 

However it is clear that, if we denote by m, the magnetisation per atom in a given 
type of cluster, we have: 

where N2mN represents the global magnetisation averaged over the 2 N 2  configurations. 
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Then, if m is the mean magnetisation per site, one obtains: 

The first term on the right-hand side is a convergent series, bounded (because 0 s m, s 1 
in case of h 2 0 and ferromagnetic interactions) by the percolation series. It is thus a 
continuous function of h 2 0, because of uniform convergence and, as m,(h) + 0 when 
h + 0, one obtains: 

so that, for every x 

Moreover, using Griffiths' inequalities (Griffiths 1967, p 478)  and equality between 
local and thermodynamic magnetisation for the homogeneous (non-random) Ising 
model (Griffiths 1967, p 484), it will be shown that m, is less than fhe latter. Letting 
then h + +0, which defines the usual spontaneous magnetisation m, per site for the 
homogeneous Ising model, one obtains: 

lim m s [ x  - g(x)]m, 
h++O 

so that we have certainly no spontaneous magnetisation for the quenched Ising model if 
x S x , ,  or if x >xc  for temperatures higher than the usual Curie temperature for the 
homogeneous Ising model. We shall now apply these ideas to the Cayley tree and, first, 
return to the percolation problem itself. 

3. The site percolation for a Cayley tree (z  = 3) 

Let us consider a Cayley tree with coordination number z = 3 and of order N :  we 
consider a central site, numbered 1 .  Then, we construct, upwards, the two neighbours 
(layer 2), then, upwards, the two neighbours of the preceding ones, etc, up to the layer N 
(figure 3 ) .  We note that the central point has two neighbours, the points on the layer N 
(boundary) have one neighbour, and all the other points have z = 3 neighbours. 

We imagine that a cluster is made of rigid branches (pairs inside the cluster) free to 
move around each point of the cluster considered as an articulation point: then, two 
clusters will be said to be of the same type if they can be superposed by a translation 
(figure 3 ) .  

We shall then characterise a type of cluster by the five following parameters: 
p :  number of sites in the cluster 
q :  number of boundary sites if the cluster was imbedded in an infinite lattice (with no 

k :  height of the cluster 
n : number of superficial points 
t :  number of oscillating points. 

site coinciding with the centre of the lattice) q = p + 2 
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Figure 3. A configuration with three clusters of the same type, havingp = 6 ,  but q = 4 , 4  and 
7,  respectively. 

These three last parameters are determined in the following way: if we imagine that the 
type of cluster is put with its centre (the site lying on the lowest layer) coinciding with the 
centre of the lattice, it would have sites on layers 1,2 ,  . , , , up to k ;  n is the number of 
points on the layer k. Finally, we say that a point is an oscillating point if it has one pair 
upwards (figure 4). 

I 
I 

Figure 4. The parameters defining a cluster. Here p = 6 ,  q = 8, k = 4, n = 2 ,  r = 3. The 
oscillating points are B. 
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To put in place a cluster of a given type, we put in place its centre, successively on the 
different points of the tree, and then make it 'oscillate' around its oscillating points 
because, if we have one pair upwards, it may occupy two different positions cor- 
responding to the two possible neighbours that are upwards. 

The total number of sites being 2N - 1 ,  it will be easily seen that one has 

with 

corresponding to the similar expressions (12)  and (7)-(9).  

types of cluster (U Ci): 
Let us now calculate the mean number of A atoms which are in a given family of 

S 

1 

i.e. 

(35)  
2' 
2k 

g UCi = p x ~ ( 1 - x ) p + 2 - [ l + ( 1 - x ) - 2 " ]  
,C€+ 

( I  ) 
so that the percolation series is now 

g ( x ) =  1 p x ~ ( 1 - x ) p + z ~ [ 1 + ( 1 - x ) - 2 " ] .  
( C )  2k 

It must be emphasised that, contrary to the case of the square lattice, the term p k  
corresponding to clusters having sites on the boundary of the Cayley tree has given a 
contribution to the percolation series; in other words, the series g ( x )  is not the series 
usually considered (Fisher and Essam 1961) when one 'neglects' boundary effects. 

To be still more concrete, we give the first terms obtained by ordering the (positive) 
series in ascending powers of x p :  

g ( x )  = ( x / 2 ) [ ( 1 -  x ) 3  + ( 1  - x ) ] + x 2 [ ( 1  - X I 4 +  ( 1  - x ) 2 ]  

+ (3x3/4) [3(1  - x)'+2(1 - x ) ~  + ( 1  - x ) ]  

+x4[5(1  - x ) 6 + 4 ( 1 -  x ) 4 +  ( 1  - x ) 2 ] + .  . . (37)  

It will be shown that, as usual for percolation series (Sykes and Glen 1976), every power 
of x (but the first) vanishes in this low-density expansion, i.e., if we develop the terms 
written above, we obtain: 

g ( x )  = x +terms beginning with x s  
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Now, we come to the main result: the series g(x) is convergent for every x(0 G x G 1) 
and 

for 0 s x  < 1 g(x) = x. (38) 

(It is clear that g(1) = 0.) 
This is rather easy to obtain, but necessitates some calculations that we have 

reproduced in appendix 2. 
This means that, if we take into account the large number of boundary sites in the 

Cayley tree, there is no percolation in the whole range O S X  < 1. This is the exact 
analogue of the result for the linear chain (Cayley tree with z = 2). 

If we come now to the quenched Ising model on the Cayley tree, defining m, as the 
magnetisation per atom in a given cluster and m as the magnetisation per site in the 
quenched system, we obtain for 0 G x < 1 

because we have no percolation. This gives the result that: 

lim m=O 
h-+O 

for 0 s x < 1. On the other hand, it has been demonstrated (Eggarter 1974, Matsuda 
1974) that, in the pure system (x = l ) ,  one also has no spontaneous magnetisation, i.e. 
equation (40) is now valid for every O G X  s 1. In the pure system, the result clearly 
comes (Matsuda 1974) from the large number of boundary sites relative to the total 
number of sites: we see that the same phenomenon occurs in the random case. 

We shall now come to a particular type of percolation which reproduces the results 
usually quoted for Bethe lattices ( x ,  = 4). 

4. The percolation near the centre of a Cayley tree (z = 3) 

We have just seen that, if ( S , )  ( i  = 1, . . . , 2N - 1) means the thermal average of the spin 
at site i (when present), one has: 

where the upper bar means a configurational average. Now, it has been shown 
(Matsuda 1974) that, in the pure case, local magnetisations near the centre of the tree 
have the usual features of spontaneous magnetisation in phase transitions problems. 
Considering, for instance, the magnetisation at the centre of the tree, one has: 

lim lim (SI) # 0 
h-+O N-rm 

if the temperature T is lower than TBp, the temperature calculated by the so-called 
Bethe-Peierls approximation. 

Now, in the random case ( x  # l), let us calculate the magnetisation at the centre of the 
tree. 
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For a finite tree, we have 

(SI) = (Sdc 

for clusters C containing site ( l ) ,  so that 
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(43) 

- 
(SI) = ( S &  ( [ 1 - 6 ( k ,  N)]2;P(l  - x y + *  + S ( k ,  N)2;cP(1 - X ) P + 1 - 2 n } .  (44) 

( C :  k GN} 

In the corresponding percolation problem, we have to calculate the number of clusters 
which contain site ( l ) ,  i.e. we sum the probability law of configurations over all 
configurations having site ( 1 )  occupied by an A atom and we thus obtain: 

x = ( [ l  - S ( k ,  N)]2;P(1 - X ) p + l  + S ( k ,  N)2'xP(1 - X ) P + 1 - 2 n }  (45) 
{ C : k G N )  

(which can be easily checked for N not too large, if desired). 
We emphasise the differences between (45) and (30): here, we count the number of 

clusters and have no factor p in the right-hand side. We restrict ourselves to clusters 
containing the centre of the tree, and we have simply x in the left-hand side. 

Now, if we calculate the number of clusters which contain site ( 1 )  and which belong 

to a given family of types of clusters U C,, then, if we let s + 00, we obtain a new 

percolation series: 

S 

1 

$ ( x )  = X P ( 1  -X)P+12r 
( C )  

(to be compared with g ( x )  given by (36)). 
The first terms are now: 

$ ( x )  = x ( 1 -  x y  + 2 x 2 ( 1  - x ) 3  + 5 x 3 ( 1  - x ) 4  + 14x4(1 - x y  + . . . . (47) 

Now (46) may be written: 

p = l  

where 

is the number of clusters of p sites containing site ( 1 )  in an infinite Cayley tree. One can 
easily obtain a recurrence formula for the g,, leading to 

so that (48) can be summed, giving: 

We thus have percolation for x > 4, and this is the result usually quoted for Cayley trees. 
Here, we have explicitly shown the nature of the approximation involved when 
'neglecting boundary effects'. 
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As a consequence for the dilute Ising model, one clearly has 

lim lim O=O for x 6; 
h++O N-a3 

and it remains for us to study 

which can be possibly non-zero only for x >io In particular, it would be interesting to 
know if limT-tO (S1) (note the order of taking limits: N + 00, then h + + 0, then T + 0) is 
non-zero as soon as x > 4, but we do not know any rigorous way to show it. 

Finally, by analogy with the pure case, we expect that similar results occur for 
clusters containing a given site remaining at finite distance from the centre when the 
boundary goes to infinity. 

- 

5. Percolation for a Cayley tree with any coordination number 

The generalisation of the above results for z > 3 is obvious. The number of boundary 
sites (in an infinite lattice) will be: 

q = p ( z - 2 ) + 2 .  

We must now define more general oscillating points; we say that a point is an oscillating 
point of order m( = 1,2 ,  . . . , z -2) if it has m branches leaving it upwards. 

Now, if CY,,, is the number of oscillating points of order m, (30)-(33) will be replaced 
by 

with 

where 2' now means: 

2 '= (c:-l )"1(c:-1 )"' . . . (c:::)"z-' 

with 

m ( 2  - l ) !  
c,-1 = m !  ( z  - 1 -m)!* 
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By straightforward extension of the calculations of appendix 2, it will be easily shown 
that, here again, there is no percolation for x # 1 : 

O < X < l  g ( x )  = x (60)  

If we come now to the percolation series giving the number of clusters containing the 
and this implies no spontaneous magnetisation for the quenched dilute king model. 

centre of the tree, we shall have: 
00 

* ( x )  = ( 1  - x )  1 [ X U  - x ) ’ - * I p g p  
p = l  

with 

[ ( z  - l )Pl!  
g p  = p ! [ ( z  - 2)p + l ] ! .  

It will be shown that J / ( x )  is the smallest root of 

x ( l - x + * ) z - l  =*. 

In particular, we obtain $ = x ,  i.e. no percolation, for x < ( z  - l ) - ’ .  This is merely the 
standard result known for Cayley trees (Fisher and Essam 1961, Coniglio 1976). 

6. Ferromagnetic percolation 

We shall now return to the case of usual lattices. Although several interesting features 
are known from various approaches, rigorous results are still lacking for the percolation 
problem (Wierman 1978). Needless to say, the situation is still more complex for the 
correlated percolation problem. We now want to show that our approach (0 2) is also 
valid for this type of problem. 

Let us then consider the infinite square lattice, with some origin 0, and the squares 
N x N centred on 0. 

We consider now 

H N  = -J 1 SjSj - h 1 Si (64)  
( i i )  i 

with J, h > 0; ( i j )  stands for the set of pairs of nearest-neighbour bonds between sites i 
and j belonging to the square; the set {Si = f 1 )  defines 2NxN configurations, and we 
associate to each of them the probability 

~ ( x )  = exp (-PHN)ITr exp(-PHN) (65)  

where Tr means a sum over the values Si = f 1 for i = 1 to N 2 .  We note that p ( x )  > 0 
and Zg(x)  = Tr p ( x )  = 1 .  In other words, the configurational average defined in § 2 is 
now replaced by the usual thermal average, which we shall indicate by brackets: 

(. . .)N = T r  . . . exp(-PHN)/Tr exp(-P H N ) .  (66)  

Suppose now that we want to calculate the average number of up spins: 
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We can decompose it in a sum over all possible clusters of up spins, so that, by the same 
arguments as in 0 2: 

where p is the number of spins (up) in the cluster considered. 
Now, it is easy to see that: 

f E C 1  I E C ?  N 

where a s t a n d s  for the set of sites which are boundary sites for the cluster. In the case 
where J = 0, one recovers the results of § 2, with x defined by 

The most striking difference with the results of § 2 is now that each term like (69) 
depends explicitly on the position of the cluster and N, and this makes the analysis much 
more difficult. We shall however follow the different steps of § 2, and see how they are 
modified here. 

Let (U C,) be a given family of types of clusters, and let g ( U  C,) be the average 

number (divided by N 2 )  of up spins which are in this family, for N + CO. We then have: 

S S 

1 1 

Because s is given we can write: 

with 

Let Cl be a given cluster with p sites and q boundary sites in the family C,: 

1 s1 

which is a sum of 2’“ (finite) terms of type (Sf.  . . S,)N, with a coefficient* 1. 
If we make the same (finite) development for each cluster of C,, we obtain: 

where the second sum is over 2’“ (depending on r )  terms. 
If i, . . . , n is a fixed set of sites, it is known (Griffiths 1967, p 484) that: 

lim ( S ,  . . . S , ) N  = (Sf.  . . S , )  
N-rm 

(74) 

exists and that the limit is invariant in a translation of a lattice vector. 
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Here, we are not in this situation, because the third sum in (75) is over ( N  - 1 - 
l ) (N - 1 - k) terms (see § 2). However, by a straightforward extension of Griffiths' 
arguments on equivalence between local magnetisation and mean (thermodynamic) 
magnetisation, it is shown in appendix 3 that 

This in turn implies that 

where the bracket is the limit of an analogous term for a fixed cluster of the family r. 
Summing over all types of clusters, i.e. taking the sup of (78), this gives the 

percolation series 

1+si 1-s ,  
g = c P (  n - n -). 

(c) i E c  2 iec 2 (79) 

This series is convergent because, as in § 2, if we denote by ( N  /N2)lnt the average 
number of spins up which are in clusters not connected to the boundary of the square 
N x N, we shall have, for every fixed M :  

where 
s M =  c p ( n - n S )  1 + si 

C ( M )  i € C  2 i e c  2 

is restricted to families which can appear in a square M x M .  The sequence SM is 
increasing, bounded, and has thus a limit which is clearly g. 

We shall now stop here, with: 

-slim l + m  (')intsg NT 
2 

with m = (S, )  because, contrary to the case of § 2, we are not able, at this point, to show 
that 

g 3 lim ( N  /N2),nt. (83) 
However, it is clear that all that has been said is equally valid for clusters of spins down, 
so that 

with 
1 -si 

i s c  2 

but here, we can show that 

gi > lim ( N ~ / N * ) ~ " ~ .  
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In fact, for a given cluster Cl, if we put: 

l -Si  l+Si 
p c / =  I7 - n - 

ieC/  2 ien 2 
(87) 

( . . . )CI= Tr . . . exp (-PHc/)/Tr exp ( - ~ H c / )  (88 )  

where Hcl is the restriction of HN to terms with i E Cl, or (i]) with i or ] E (Cl), it will be 
easily seen that: 

(see Lebowitz and Penrose (1977) for an analogous result). 
Now, two clusters belonging to the same family differ only via the term (ni,a(l + 

Si)/2)N and Griffiths' inequalities can be applied to this term (sum of correlation 
functions with all positive coefficients): 

This can be done for the (N - 1 - l ) (N - 1 - k) terms of a particular family, so that 

where SN (J) is the analogue of SM given by (81), but now for spins down. Thus, we have 
shown that: 

lim ( N ~ / N ~ ) ~ , , ~  = gi (92) 

so that the infinite cluster of spins down, corresponding to the average number 
[(1-m)/2]-gJ can be viewed as the set of spins down which are connected to the 
boundary of the square when this boundary goes to infinity. 

Although we have no true argument, we think that this may have some connection 
with the problem of the phase transitions viewed as a macroscopic instability with 
respect to boundary conditions (Gallavotti (1972) and references therein). 

Note that, if h = 0 (from the beginning), then m = 0, g' = g'= lim (N'/N2)int. On 
the other hand, as previously said, we have not been able to show that, when 
h # 0, g'= lim (Nf/N2)int. Moreover, if not true, we do not know if this may have 
consequences for the percolation problem of spins up. 

A similar study would be possible for Cayley trees, and a theory 'neglecting surface 
effects' has appeared (Coniglio 1975). 

As a final comment, we should wish to point out that we have not studied the 
problem of limh++o g, but we hope that the approach that we have used here can throw 
some light on questions which may arise. 

7. Conclusions 

Instead of starting with the infinite lattice, as is usually done in percolation problems, we 
have carefully examined the finite lattice problem; the usefulness of such an approach 
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had been shown (Griffiths and Lebowitz 1968) for obtaining rigorous results in the 
dilute Ising problem. 

Taking as a definition for the percolation series the mean number of sites in any 
(finite) cluster, we have shown that: 

(a) In usual lattices, due to the vanishing ratio of number of surface sites over 
volume sites, this is equivalent to computing the mean number of sites in clusters which 
are not connected to the boundary. 

(b) In Cayley trees, this is not true and results in the absence of percolation (for 
x # l),  and consequently in the absence of spontaneous magnetisation for the dilute 
Ising model. However, it is possible to define some particular type of percolation, 'near 
the centre of the tree', and one recovers then the critical concentration x c  = ( z  - l)-'. 

(c) It is possible to generalise the results for the ferromagnetic percolation problem; 
in a pure Ising model, it is possible to define percolation series for the average number of 
spins up (or down); in usual lattices, this corresponds, for spins down, to the average 
number of spins down which belong to clusters not connected to the boundary. 

Appendix 1. 

Although it is known that x c -  0.593 for the square lattice, we think it valuable to have 
rather direct proofs that g ( x )  = x for low x .  

We reproduce equation (23) of the text: 

1 I s N I  

Because ( l - ~ ) ~ s l  for a S O  and 1 / N 2 <  1/N, we have 

and then 

(Al .  1) 

(A1.2) 

(A1.3) 

so that, as soon as the infinite series & p x p  converges, we shall have g ( x ) = x .  

hand, q G 2 p  + 2 (the equality is obtained for linear clusters), so that: 
But we know that the percolation series converges (with sum g ( x ) ) .  On the other 

pxP(1 - x ) 2 p + 2 4 g ( x ) .  
(C) 

Taking x = f, which maximises x (  1 - x ) ~ ,  one obtains: 

(A1.4) 

(A1.5) 

Thus, g ( x )  = x for x 4 4/27. 
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Appendix 2. 

Let us rewrite (30)-(33) of the text as: 

( 2 N - 1 ) ~ =  1 J J U ( C Y ) +  C Y [ V + C Y W ] +  Y Z  (A2.1)  
{ C  k s N - I }  ( C  k s N - 1 )  {C k = N }  

with 
y = pxP( 1 - x)p+22' 

v = ( 1  - X ) - l  

w = ( 1  - X ) - 2 n  

= 2N-k- 2 + (2N-k- - X ) - 2 n  

= (1 - X ) - l - Z n  

(A2.2)  

with 0 s CY s 2 being arbitrary. 

Then 

(A2.3)  

for fixed ko,  so that 

2' 
2k C p x P (  1 - x y + *  - [ 1 +  ( 1  -x)-*"] .  (A2.4)  x a  lim Y N Z Y O =  

N+CC { C  k s k o }  

Now, let ko + CO: this shows that the percolation series (36)  is the limit of an increasing 
and bounded sequence, so that it converges and is less than x. 

1 But, if 2 s  CY s 2,  one will see easily that: 
^, L' 

yN (a  ) s px O( 1 - x)p+2 - [ 1 + ( 1 - x )-*"I. 
{ C : k S N - I }  2k  

(A2.4)  and (A2.5)  prove that: 

lim y N ( a )  = g ( x ) ,  
N-CC 

the sum of the percolation series, which is independent of CY. 

Choosing now i s  a l  G a2 s 2,  one obtains: 

As v < w, one also has 

1 
O =  lim 7 c YU 

N-co 2 - 1 { C : k S N - l }  

so that 

(A2.5)  

(A2.6)  

(A2.7)  

( A 2 . 8 )  

( A 2 . 9 )  
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If x # 1, this is less than 

1353 

which goes to zero. 
Thus we have 

g(x) = x for x # l ( O < X  < 1) .  

Appendix 3. 

We want to study 

(A2.10) 

(A2.11) 

(A3.1) 

(see equation (77) of the text). 

‘thermodynamic magnetisation and local magnetisation’ (Griffiths 1967, p 484). 
To this aim, we follow the arguments of Griffiths concerning equivalence between 

For fixed (i ,  . . . , n )  we have: 

(S ,  . . . S,)N s lim (S ,  . . . S , ) N  = ( S i .  . . S , )  (A3.2) 

but this limit is the same for the (N - 1 - l)(N - 1 - k) terms in (A3.1) because all these 
terms are corresponding terms in clusters which belong to the same type (translation 
invariance). 

Thus 

N-w 

(N- 1 -l)(N- 1 -k) 
= (SI. . . S, ) .  

N2 y < ( S i .  . . S , )  lim 
N-Pm 

(A3.3) 

Now, let M be fixed, larger than 1 and k. For N sufficiently large, consider the 
square ( N - 2 M ) x ( N - 2 M )  centred on 0, and let A I , .  . . , A ,  with t = 
(N - 2M - 1 - l)(N - 2M - 1 - k) be the set ( i ,  . . . , n )  corresponding to clusters inside 
this square. 

One has: 

1 
y 2 lim 7 [((TA,)N +. . . 

N-m N (A3.4) 

where 

((~A)Nmeans fl Si I 

( ieA )N 

But any cluster inside the square ( N - 2 M ) x ( N - 2 M )  is also inside a square, 
centred on the left upper corner of the rectangle (k x 1) containing the cluster, with size 
M x M. All these squares, in turn, are inside the initial square N x N. 

Thus 
Ty 

(UAi)N (gAj)M (A3.5) 
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where the right-hand side of ( A 3 3  is an average with Hamiltonian restricted to the 
squares M x M. 

so that 

( N - 2 M -  1 - l ) (N - 2M - 1 - k) - 
( f f A k ) M *  N2 YA 

For fixed M and for N + CO, one obtains: - 
Y A  (ffAj>M* 

Now, if M -+ CO, 

( f f A / ) M  + ( f fA, ) .  

Finally, we thus have: 

Y = ( f fAj )  

which corresponds to equation (77) of the text. 

(A3.6) 

(A3.7) 

(A3.8) 

(A3.9) 

(A3.10) 
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